Chemical Transformation of Bis((perfluoroalkyl)sulfonyl)methanes and 1,1,3,3-Tetraoxopolyfluoro-1,3 dithiaycloalkanes

Shizheng Zhu,¹ Guoling Xu,¹ Chaoyue Qin,¹ Xu Yong,¹ Chu Qianli,¹ and Darryl D. DesMarteau²

1Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Lu, Shaghai 200032, China

2Chemistry Department, Clemson University, Box 341905, Clemson, SC, 29634-1905

Received 21 May 1998; revised 7 August 1998

ABSTRACT: *Halogenation of the potassium or silver salts of bis((trifluoromethyl)sulfonyl)methane* $(CF_3SO_2)_2CH_2$ *and its cyclo analogues* $(CF_2)_nSO_2$ *-CH2SO2CF2 with N-fluoro-bis((trifluoromethyl)sulfonyl)imine (CF₃SO₂)₂NF, chlorine or bromine gave good yields of the corresponding* ^a*-halo disulfones*

 $(CF₃SO₂)₂CHX$ and $(CF₂)_nSO₂CHXSO₂CF₂ (X: F, Cl, I)$ *Br;* $n = 1,2$ *. Some chemical transformations of these fluorinated* ^a*-halo-disulfones are described.* q 1999 John Wiley & Sons, Inc. Heteroatom Chem 10: 147– 152, 1999

INTRODUCTION

Compounds containing two geminal sulfonyl groups are of interest because of their unusual properties [1]. Studies have developed mainly in two directions: the first being investigation of their thermodynamic

or kinetic acidity and the formation, stability, and reactivity of the corresponding carbanions; the second being a search for their new and improved syntheses. Bis((perfluoroalkyl)sulfonyl)methanes $(R_1SO_2)_2CH_2$ have been known for a long time [2,3] and have been shown to be very strong hydrocarbon acids [3]. Recently, we have reported the synthesis of the fluorinated cyclic disulfones $(CF_2)_nSO_2CH_2$ - $SO_2CF_2(1)$ ($n = 1,2,3$) [4]. As expected, compounds **1** are highly acidic with $pk_a \leq 1$ in H₂O. The methylene carbon is easily functionalized to give both mono and disubstituted derivatives. A single α -substitution gives a new acid whose acidity is affected by the nature of the substituent.

RESULTS AND DISCUSSION

1,1,3,3-Tetraoxopolyfluoro-1,3-dithacycloalkanes

 $(CF_2)_nSO_2CH_2SO_2CF$, $(n = 1, 1a; n = 2, 1b)$ (1) have been prepared by the reaction of α , ω bis(fluorosulfonyl)perfluoroalkanes $FO, S(CF_2)$ _n SO_2F with CH3MgCl in THF. Compounds **1** are readily neutralized by the action of potassium or silver carbonate to give the corresponding salts.

Correspondence to: Darryl D. DesMarteau.

Contract Grant Sponsor: National Science Foundation of China (NNSFC No. 29632003 and No. 29672041 to S. Zhu).

Contract Grant Sponsor: Gas Research Institute (D. D. Des-Marteau).

Contract Grant Sponsor: NSF (D. D. DesMarteau). $@$ 1999 John Wiley & Sons, Inc.

$$
1 + M_2CO_3 \rightarrow (CF_2)_nSO_2CHMSO_2CF_2 (M: K, Ag)
$$

\n
$$
n = 1, M = K, 2a; n = 1, M = Ag 2c;
$$

\n
$$
n = 2, M = K, 2b; n = 2, M = Ag 2d;
$$

This reaction occurs rapidly and quantitatively at 22° C in acetone solution. N-fluoro-bis((trifluoromethyl)sulfonyl)imine (CF_3SO_2) , NF is known as a strong electrophilic fluorination reagent [5] and has been widely used to prepare many monofluorine substituted compounds. It reacted smoothly with **2b** to give α -fluoro-1,1,3,3-tetraoxopolyfluoro-1,3-dithacycloalkanes.

$$
(CF_3SO_2)_2NF + 2b \xrightarrow[\text{r.t. 8h}]{CH_2Cl_2} \underset{\text{r.t. 8h}}{\underbrace{CF_2)_2}SO_2CHFSO_2CF_2}
$$

The 19F NMR spectrum of **3b** is very different from

that of $(CF_2)_nSO_2CHMSO_2CF_2$ for which the ¹⁹F NMR is an apparent first-order spectrum with two resonances for the CF_2-C and CF_2-S groups in the ratio of 1:2 at $\delta = 126.0$ and -121.6 . For compound **3b**, the spectrum consists of two second-order AB patterns, and the observed bands can be analyzed as a double AB spectrum due to the nonequivalent axial and equatorial fluorines of each CF, group in the molecule **3b**. The assignment of this spectrum is based upon the assumption that equatorial (B) fluorines are generally more highly shielded than axial fluorines (A) [6–7]. For CF₂S, $\Delta\gamma_{AB} = 1716$ Hz ($\delta =$ 20.3), and the coupling constant $^2J_{AB} = 264$ Hz. For the CF₂C, $\Delta \gamma_{AB} = 1163$ Hz ($\delta = 13.8$), and ${}^{2}J_{AB} = 288$ Hz. A large solvent dependence for the 19F NMR spectrum of $3b$ was observed. For example, in CDCl₃, it is a multiplet (d-t) at $\delta = 168.5$ ($^{2}J_{\text{HF}} = 45$ Hz, $^{4}J_{\text{FF}}$ $= 9$ Hz); in acetone-d₆, the 2-F is a triplet at $\delta =$ -170.1 ($^{4}J_{FF}$ = 9 Hz), indicating a fast exchange of the acidic hydrogen with the more polar solvent.

Koshar [3] has reported the chloride and the bromide of bis((trifluoromethyl)sulfonyl)methane $(CF_3SO_2)_2CHX$ (X: Br, Cl), but no corresponding fluoride has been prepared up to the present. We used $(CF_3SO_2)_{2}NF$ to react with $(CF_3SO_2)_{2}CHK$ in CH₂Cl₂ at 22° C, and three products were obtained:

$$
(CF3SO2)2NF + (CF3SO2)2CHK $\xrightarrow[2^{2c}C, 8h]$
\n
$$
(CF3SO2)2CH2 + (CH3SO2)2CHF + (CF3SO2)2CF2
$$
$$

The observed products can be explained as follows:

$$
5 + (CF_3SO_2)_2CHK \rightarrow 4 + (CF_3SO_2)_2CFK \xrightarrow{(CF_3SO_2)_2NF} 6
$$

Compound **5** is more acidic than **4** and the mixture

of **4–6** is obtained even with a substantial excess of $(CF_3SO_2)_{2}NF.$

Both **5** and **6** are liquids and can be separated and purified by column chromatography. They were fully characterized by spectroscopic methods and elemental analyses. In the IR and 19F NMR spectra, it is apparent that the fluorine substitution shifts the v_{antisym} (SO₂) absorption to higher wave numbers and the CF_3 groups shift downfield. The values v_{antisym} $(SO₂)$ 1398 cm⁻¹, 1411 cm⁻¹, and 1429 cm⁻¹ and the δ CF₃ are -76.5 , -73.4 , and -69.4 for compounds **4, 5**, and **6**, respectively.

Treatment of $(CF_3SO_2)_2CHAg$ with CF_3SO_2Br formed the bromide (CF_3SO_2) , CHBr 7. In this reaction, the carbanion did not attack the sulfonyl sufur atom but abstracted the bromine atom of CF_3SO_2Br .

Refluxing (CF_3SO_2) , CHAg with excess chlorotrimethylsilane afforded the silylated compound (CF_3SO_2) _{CHSiMe₃ 8.}

$$
(CF3SO2)2CHAg
$$
\n
$$
(CF3SO2)2CHAg
$$
\n
$$
Me3SiCl
$$
\n
$$
(CF3SO2)2CHSiMe3
$$
\n
$$
8
$$

Products **7** and **8** are thermally stable liquids with b.p. $52^{\circ}C/4$ torr and $70^{\circ}C/0.1$ torr, respectively.

The bromides and chlorides, **9** and **10**, can also be prepared by direct treatment of the potassium salts with bromine or chlorine gas.

$$
(CF2)nSO2CHKSO2CF2 \xrightarrow{X2}_{CHCl3} (CF2)nSO2CHKSO2CF2
$$

9 and 10

$$
(CF2)nSO2CHKSO2CF2 \xrightarrow{X2}_{CHCl3} (CF2)nSO2CHKSO2CF2
$$

9 and 10
n=1, X=Br 9a; X=Cl 10a
n=2, X=Br 9b; X=Cl 10b

These reactions occur rapidly at room temperature in CHCl₃ or CCl_4 and usually give good yields. As mentioned earlier, the 19F NMR spectrum of each 2 fluoro-substituted compound **3** is a second-order AB spectrum for the ring $CF₂$ groups with a strong solvent dependence. Similarly, in the case of the bromide **9b**, the observed spectrum depends on the solvent used; for example, in $(CD₃)$, CO , it is an apparent first-order spectrum. In the less polar solvent $CDCl₃$, it is a double AB pattern for CF₂S, $\Delta\gamma_{AB}$ = 1741 Hz $(\delta = 20.7)$ and the coupling constant ²*J*_{AB} = 264 Hz; for the CF₂C, $\Delta \gamma_{AB} = 1138$ Hz ($\delta = 13.5$) and ${}^{2}J_{AB} =$ 289 Hz.

Under similar conditions, the *gem*-dibromo di-

sulfone $(CF_2)_nSO_2CBr_2SO_2CF_2$ 11 was also prepared. It was readily decomposed by the action of light, but it is thermally stable. When heated to 120° C (m.p. 91–94°C), it showed little decomposition. The α -monohaldisulfones **9** and **10** behave similarly. The homolytic dissociation of the carbon-bromine bond of compounds **9a** and **9b** occurred readily under irradiation or under the influence of free radical catalysts. For example, irradiation of **9b** in toluene afforded benzyl bromide and **1b** in high yields.

When this photoreaction was carried out in allyl ether, the product was the 2,3-substituted tetrahydrofuran derivative **12**.

Attempts to extend this reaction to fluoroalkenes failed, both under irradiation or by using a free radical catalyst, such as AIBN and BPO. Compound **9b** did not add to $CF_2=CCl_2$ or to $CF_2=CFCl$.

Under the same conditions, $(CF_3SO_2)_2CHF$ did not react with $(CH_2=CHCH_2)_2O$. Similar to the perfluoroalkyl iodides [8], the bromine atom in compound **9** is also readily extracted. This can be demonstrated by the following reaction:

 \rightarrow PhBr + (CF₂)₂SO₂CH(MgCl)SO₂CF₂ \rightarrow H₃O⁺ > 1b $9b + PhMgCl =$

As with the usual allyl halides, these monohalides can readily be transformed into the corresponding Grignard reagents:

$$
9 + Mg \xrightarrow{\text{THF}} (CF_2)_n\text{SO}_2\text{CH}(MgCl)\text{SO}_2\text{CF}_2
$$

Compared to the ordinary Grignard reagents, RMgX, however, **13** is unreactive. For example, when it was stirred with PhCOCl or CF_3COCl for 12 hours, no reaction occurred, and only a small amount of **1** was detected in the reaction mixture.

Heating of $CF_2SO_2CHMgClSO_2CF_2$ with excess

of PhCH₂Br gave $SO_2(CF_2)_2SO_2CH-CH_2C_6H_5$ 14 in 75% yield. This 2-benzyl-substituted product can also be obtained in 65% yield by the reaction of **2b** with benzyl bromide.

In summary, a variety of bis(perfluoroalkanesulfonyl)methyl halides $R_fSO_2CHXSO_2R_f$ (X: F, Cl, Br) have been synthesized. Some photoreactions and reactions of organometallic derivatives of these fluorinated α -halo disulfones have been described.

EXPERIMENTAL

Melting points were taken on a Mel-Temp meltingpoint apparatus. All the boiling and melting points

are uncorrected. Infrared spectra were obtained using a Perkin-Elmer 1430 or IR-440 spectrometer. 19F NMR and 1H NMR were recorded on either a Varian-90 or JEOL FX-90Q spectrometer, CFCl₃ or TMS being used as an internal standard. MS spectra were obtained using a Hewlett-Packard 5985B GC/MS spectrometer or a Finnigan 4021 GC/MS instrument. All solvents were dried before use.

Fluorination of the Disulfone

A typical procedure was carried out as follows: A

 Γ

 $\mathbf{\mathsf{u}}$

mixture of potassium salt $(CF_2)_2SO_2CHKSO_2CF_2 (3.3)$ g 10 mmol), which was obtained by neutralization of 1**b** (2.92 g, 10 mmol) with K_2CO_3 (0.7 g, 5 mmol) in acetone, plus (CF_3SO_2) , NF (3.0 g, 10 mmol) and CH_2Cl_2 (30 mL) was stirred at room temperature for 12 hours. After removal of the $(CF_3SO_2)_2NK$ by filtration, the filtrate was evaporated to dryness, and the crude product (2.5 g) was recrystallized from CH₃CN and CHCl₃ to give pure products 3b.

Similar treatment of $(CF_3SO_2)_2CHK$ (3.2 g, 10 mmol) with $(CF_3SO_2)_2NF$ (3.0 g, 10 mmol) afforded $(CF_3SO_2)_2CH_2$ (0.5 g), $(CF_3SO_2)_2CHF$ (1.4 g), and $(CF_3SO_2)_2CF_2 (0.9 g)$.

$\overline{}$ $(CF_2)_2SO_2CHFSO_2CF_2$ 3b

 $\overline{}$

IR (v_{max} , cm⁻¹) 2965, 2911 (m, C-H), 1408, 1342 (s, SO₂), 1220, 1120 (s, C-F). $\delta_{\text{H,ppm}}$ (CDCl₃) 6.25 (d-t, $^{2}J_{\text{HF}} = 45$ Hz, $^{4}J_{\text{HF}} = 6$ Hz).

 $\delta_{\rm F,ppm}\left({\rm CDCl}_3\right) - 105.8~(2~{\rm X}~{\rm CF_2^a\!-\!S}, {\rm AB^2}J_{\rm FF} = 264$ Hz, $^{4}J_{\text{FF}} = 6$ Hz), -126.2 (2 X CF₂ $-$ S, AB), -118.0 $(CF_2^a - C, AB^2J_{FF} = 288 \text{ Hz}), -131.8 (CF_2^e-C, AB),$ -168.0 (CHF, d). MS (m/z, %) 311 (M⁺H, 100), 292 $(MH^{\dagger}$ -F, 34.6), 131 (C₃F₅⁺, 30.4), 100 (C₂F₄, ⁺, 96.8). Elemental analysis for $C_4HF_7O_4S_2$: found: C, 15.18; F, 37.02; calcd: C, 15.48; F, 36.77.

(CF₃SO₂)₂CHF 5

IR (v_{max} , cm⁻¹) 2951 (m, C-H), 1411 (vs, SO₂), 1221, 1105 (s, C-F). $\delta_{\text{H,ppm}}$ (CDCl₃) 7.50 (² J_{HF} = 44 Hz). $\delta_{\text{F,ppm}}$ $(CDCl_3)$ – 73.5 (d, CF₃), – 170.2 (d, CHF). MS (m/z, %) 299 (M`H, 14.2), 281 (MH`-F, 100), 133 $(CF₃SO₂⁺, 9.66), 69 (CF₃, 35.4). *Elemental analysis*$ for $C_3HF_7O_4S_2$: found: C, 12.29; F, 44.71; calcd: C, 1209; F, 44.63.

$(CF_3SO_2)_2CF_2$ 6

IR (v_{max} , cm⁻¹) 149 (vs, SO₂), 1230 (s, SO₂), 1110 (s, CF), $\delta_{\text{F,ppm}}$ (CDCl₃) – 69.4 (CF₃, s), –94.4 (CF₂, s). MS $(m/z, \%$) 317 (M⁺H, 0.9), 301 (MH⁺-O, 3.2), 281 (M⁺-F-O, 100.0), 133 (CF₃SO₂⁺, 13.1), 117 (CF₃SO⁺, 5.0).

Elemental analysis for $C_4F_8O_4S_3$: found: C, 11.52; F, 41.88; calcd: C, 11.39; F, 42.09.

Reaction of (*CF₃SO₂*)*₂CHAg with CF₃SO₂Br*

 $CF₃SO₂Br (1.07 g, 5 mmol) was injected into a 25 mL$ flask containing a mixture of $(CF_3SO_2)CHAg$ (1.93 g, 5 mmol) and $CHCl₃$ (15 mL). After the mixture had been stirred for 12 hours at room temperature, the solvent was evaporated, and the residue was distilled under reduced pressure to give the product (CF_3SO_2) , CHBr 7 (2.2g, 62%) b.p. 52°C/4 torr (lit. 94°C/1196 Pa)³ $\delta_{\rm H}$ (CDCl₃): 6.13 (s, CH), $\delta_{\rm F}$ (CDCl₃): -72.6 (s, CF₃).

Reaction of (*CF₃SO₂*)₂*CHAg with Me₃SiCl*

A mixture of $(CF_3SO_2)_2CHAg$ (1.93 g, 5 mmol) and $Me₃SiCl$ (15 mL) was stirred for 5 hours at 50 $^{\circ}$ C. The excess $Me₃SiCl$ was removed by evaporation, and the residue was distilled in vacuum to give the product $(CF_3SO_2)_2CHSiMe_3$ **8** (1.0 g, 57%) b.p. 70–71°C/13.3 Pa.

$(CF₃SO₂)₂CHSiMe₃$ 8

IR (v_{max} , cm⁻¹) 3076, 2989, 2924 (s, CH), 1398, 1326, 1213 (s, SO₂), 1113 (s, CF), $\delta_{\text{H,ppm}}$ (CD₃COCD₃) 5.05 (s, CH), 0.1 (s, CH₃), $\delta_{\text{F,ppm}}$ (CD₃COCD₃) -76.86 (s, CF₃). MS (m/z, %) 353 (M⁺H, 4.8), 352 (M⁺, 10.2), 357 (M⁺-CH₃, 7.5), 133 (CF₃SO₂⁺, 12.1), 69 (CF₃⁺, 100.0). Elemental analysis for $C_6H_{10}F_6O_4S_2Si$: found: C, 20.57; H, 2.92; F, 32.60; calcd: C, 20.45; H, 2.84; F, 32.39.

Preparation of the Bromide and Chloride

(*CF2)*n*SO2CHXSO2CF2* (*X: Br, Cl*)

Typical procedure: Bromine (2.0 g, 12.5 mmol) was added dropwise to a 50 mL flask containing a mixture of $2b$ (3.3 g, 10 mmol) and Cl_4 (30 mL). After the mixture had been stirred for 4 hours at room temperature, the solvent and excess bromine were removed under reduced pressure, and the residue was recrystallized from CHCl₃ and CH₃CN (1:1) to give **9b** (2.9 g).

Similarly, compounds **9a, 10a**, and **11** were prepared.

(CF₂)₂SO₂CHBrSO₂CF₂ 9b

 $\overline{}$

IR (v_{max} , cm⁻¹) 2981, 2953 (m, CH), 1401, 1218 (s, SO₂), 1200, 1150 (s, CF), $\delta_{\text{H,ppm}}$ (CDCl₃) 6.50 (s, CHBr), $\delta_{F,ppm}$ (CDCl₃) – 106.3 (2 X CF₂S, AB ²J_{FF} = 264 Hz), -127.0 (2 X CF₂S, AB), -118.8 (CF₂C, AB) $^{2}J_{\text{FF}}$ = 289 Hz), -132.3 (CF^e₂C, AB ² J_{FF} = 289 Hz), $\delta_{\text{F,ppm}}$ (CD₃COCD₃) -121.2 (2 X CF₂S, m), -125.7 (CF_2S, m) . MS $(m/z, %)$ 373/371 $(M⁺H, 8.2/8.8)$, 372/ 370 (M⁺, 2.7/3.6), 291 (MH⁺-Br, 43.2), 150 (C₃F₅⁺,

72.3), 100 $(C_2F_4^+$, 100.0). Elemental analysis for $C_4HF_6O_4S_2Br:$ found: C, 12.69; F, 30.25; calcd: C, 12.94, F, 30.73.

(CF₂)₂SO₂CHClSO₂CF₂ 10b

 \blacksquare

IR (v_{max} , cm⁻¹) 2983, 2950 (m, CH), 1403, 1220 (vs, SO₂), 1200–1105 (vs, CF); $\delta_{\text{H,ppm}}$ (CDCl₃) 6.63 (CHCl, s); $\delta_{\text{F,ppm}}$ (CDCl₃) -106.0 (2 X CF^aS, AB ²*J*_{FF} = 258 Hz, -126.5 (2 X CF^e₂S, AB ²*J*_{FF} = 258 Hz), -118.3 $(CF_2^aC, AB^2J_{FF} = 284 \text{ Hz}), -132.0 (CF_2^eC, AB^2J_{FF} =$ 284 Hz). MS (m/z, %) 331/229 (M`H, 7.3/7.8), 313/ 211 (MH⁺-O, 1.6/1.8), 328/326 (M⁺, 3.4/3.8), 100 $(C_2F_4$, 100.0). Elemental analysis for $C_4HF_6O_4S_2Cl$: found: C, 14.35; F, 35.11; calcd: C, 14.70; F, 34.92.

CF2SO2CHBrSO2CF2 **10a**

IR (v_{max} , cm⁻1) 2980, 2925 (m, CH), 1408, 1355 (s, SO₂), 1220–1105 (s, CF); $\delta_{\text{H,ppm}}$ (CDCl₃) 6.37 (s, CHBr); $\delta_{\text{F,ppm}}$ (CDCl₃) – 117.3 (2 X CF₂, AB $^{2}J_{\text{FF}}$ = 226 Hz), -119.9 (2 X CF₂, AB $^{2}J_{\text{FF}}$ = 226 Hz). MS (m/z, %) 323/321 (M+H, 8.7/9.0), 322/320 (M+, 2.4/2.1), $306/304$ (M⁺-O, 1.3/1.6), 259/257 (M⁺H-SO₂, 1.8/2.0), 242 (MH⁺-Br, 48.3), 100 ($C_2F_4^+$, 100.0). Elemental analysis for $C_3HF_4O_4S_3Br$: found: C, 11.30; F, 23.41; calcd: C, 11.21; F, 23.68. $\overline{}$

(CF_2) ₂SO₂CBr₂SO₂CF₂ 11

IR (v_{max} , cm⁻¹) 1413, 1289 (s, SO₂), 756, 641 (s, C-Br), 1215, 1192, 1174, 1110 (s, CF); $\delta_{\text{F,ppm}}$ (CD_3COCD_3) – 110.5 (2 X CF₂S, m), – 124.1 (CF₂C, m). MS (m/z, %) 453/451/449 (M+H, 46.3/81.4/39.9), 373/371 (MH⁺-Br, 15.9/20.3), 263 (MH⁺-O-CBr₂, 100.0), 174/172/170 (CBr₂⁺, 5.6/12.5/5.6). Elemental analysis for $C_4F_6O_4S_2Br_2$: found: C, 10.35; F, 24.98; calcd: C, 10.67; F, 25.37.

Reaction of $(CF_2)_2SO_2CHBrSO_2CF_2$ **9a** *with Allyl Ether*

A mixture of **9a** (3.7 g, 10 mmol) and allyl ether (10 mL) contained in a quartz tube equipped with a reflux condenser, dry tubing, and a stirring bar was irradiated with an 800 W low-pressure mercury lamp for 4 hours. The excess allyl ether was removed at reduced pressure, and the residue was recrystallized from THF/CHCl, to give product 12 (3.4 g, 72%).

IR (v_{max} , cm⁻¹) 2865 (m, CH), 1393, 1380 (s, SO₂), 1218, 1200, 1109, 1153 (s, CF), 1110 (C–O). $\delta_{\text{H,npm}}$ $(CDCl_3)$ 5.40 (t, SO₂CHSO₂), 4.05–3.75 (m, 2 X OCH₂, cyclo CH, 4H), 2.50 (m, CH₂Br), 1.71 (m, C-CH₂-C). $\delta_{\rm F,ppm}$ (CDCl₃) – 109.7 (2 X CF³S, AB ²*J*_{FF} = 269 Hz),
- 129.9 (2 X CF⁵S, AB), – 118.7 (CF³C, AB *J_{FF}* = 288
Hz), – 132.1 (CF⁵C, AB). MS (m/z, %) 471/469 (M+H, 14.7/14.1), 389 (M⁺-Br, 100.0), 359 (M⁺-Br-CH₂O, 2.4). Elemental analysis for $C_{10}H_{11}F_6O_5S_2Br$: found: C, 25.71; H, 2.64; F, 24.18; calcd.: C, 25.59; H, 2.35; F, 24.31.

Preparation of
$$
SO_2(CF_2)_2SO_2CCH_2Ph
$$
 14

Benzyl bromide (17 g, 10 mmol) was added dropwise to a 50 mL flask containing a solution of

 $SO_2(CF_2)_2SO_2CHMgCl$ and THF (30 mL) that was

prepared by treatment of $SO_2(CF_2)_2SO_2CHCl$ (2.8 g, 10 mmol) with Mg (0.124 g, 10 mmol) in 30 mL of dry THF at 60° C. After the addition, this reaction mixture was refluxed for 8 hours. The 19F NMR spectrum showed the reaction to be completed. The reaction mixture was poured into ice water (50 mL), and the solid was filtered off and dried, giving the crude product (2.2 g, 71%). Recrystallization from $CH₃CN/CHCl₃$ gives pure product.

SO2(CF2)2SO2CHCH2Ph **14**

 $\overline{}$

IR (v_{max} , cm⁻¹) 2941 (m, CH), 1599, 1495 (m, C₆H₅), 1377, 1353 (s, SO₂), 1202–1135 (s, CF). $\delta_{\text{H,ppm}}$ (CDCl₃) 7.57 (s, Ph), 4.88 (t, CH), 3.60 (d, $J = 8$ Hz). $\delta_{\text{F,ppm}}$ $(CDCI_3) - 119.34$ (s, CF_2^eS), -117.94 (s, CF_2^aS). MS $(m/z, %$) 333 (M⁺H, 4.3), 332 (M⁺, 24.7), 167 (M⁺- $C_3F_6SO_2-H$), 141 (M⁺-C₃F₆-CH₂C₆H₅), 103 (M⁺- $C_3F_6O_4S_2H$, 100.0). Elemental analysis for $C_{10}H_8F_4O_4S_2$: found: C, 36.50; H, 2.63; F, 22.71; calcd: C, 36.14; H, 2.41; F, 22.89.

REFERENCES

- [1] Neplynev, V. M.; Bazarova, I. M.; Lozinskii, M. O. Russ Chem Rev (Eng Transl) 1986, 55, 883.
- [2] Gramstad, T.; Haszeldine, R. W. J Chem Soc 1957, 4069.
- [3] Koshar, R. J.; Mitsch, R. A. J Org Chem 1973, 38, 3358.
- [4] Zhu, S. Z.; Pennington, W. T.; DesMarteau, D. D. Inorg Chem 1995, 34, 792.
- [5] (a) Singh, S.; DesMarteau, D. D.; Zuberi, S.; Witz, M.; Huang, H. N. J Am Chem Soc 1987, 109, 7194; (b) DesMarteau, D. D.; Witz, M. J. J Fluorine Chem 1991, 52, 7.
- [6] Lee, J.; Orrell, K. G. Trans Faraday Soc 1967, 63, 21.
- [7] Emsley, J. W.; Feeney, J.; Sutcliffe, L. H. High Resolution NMR Spectroscopy; Pergamon Press: Oxford, UK, 1965, Vol. 2, p 921.
- [8] Banks, R. E. Fluorocarbons and Their Derivatives; Oldbourne Press: London, 1964; p 59.